ПАТОЛОГИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ НА ФОНЕ COVID-19


  • Акилов Х.А., Ибадов Р.Р.
    1 – Центр повышения квалификации медицинских работников, Республика Узбекистан, г. Ташкент; 2 – Республиканская специализированная больница Зангиота-1, Республика Узбекистан, г. Ташкент

Abstract

Пандемия COVID-19 имеет потенциальные последствия для сердечно-сосудистой системы миллионов людей во всем мире, переживших данную инфекцию. SARS-CoV-2, как этиологический агент COVID-19, может инфицировать сердце, ткани сосудов и клетки крови через ACE2 (ангиотензинпревращающий фермент-2). Острая сердечная недостаточность является частым внелегочным проявлением COVID-19 с потенциальными хроническими последствиями. В этой статье представлен обзор клинических проявлений поражения сердечно-сосудистой системы и патогенетических механизмов прямого и непрямого иммунного ответа на SARS-CoV-2, влияющих на деятельность сердечно-сосудистой системы.

Keywords

COVID-19, сердечно-сосудистая система, кардиальные проявления, эпидемиология, патогенез.

Literature

Vos T., Lim S.S., Abbafati C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204–1222

Mensah G.A., Roth G.A., Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol. 2019;74:2529–2532.

World Health Organization. Novel Coronavirus (2019-nCoV). Situation Report22 (11 February 2020).

Roth GA, Vaduganathan M, Mensah GA. Impact of the COVID-19 Pandemic on Cardiovascular Health in 2020: JACC State-of-the-Art Review. J Am Coll Cardiol. 2022 Aug 9;80(6):631-640.

Vasudeva R, Challa A, Al Rifai M, Polana T, Duran B, Vindhyal M, Lewis EF. Prevalence of cardiovascular diseases in COVID-19 related mortality in the United States. Prog Cardiovasc Dis. 2022 Sep-Oct;74:122-126.

Singh M.K., Mobeen A., Chandra A., Joshi S. et al. A meta-analysis of comorbidities in COVID-19: which diseases increase the susceptibility of SARSCoV-2 infection? // Comput. Biol. Med. 2021. Vol. 130. Article ID 104219.

Kingah PL, Luu HN, Volcik KA, Morrison AC, Nettleton JA, Boerwinkle E. Association of NOS3 Glu298Asp SNP with hypertension and possible effect modification of dietary fat intake in the ARIC study. Hypertens Res. 2010;33(2):165-9.

Farshidfar F., Koleini N., Ardehali H. Cardiovascular complications of COVID-19. JCI Insight. 2021 Jul 8; 6(13): e148980. Published online 2021 Jul 8.

Han H, Xie L, Liu R, Yang J, Liu F, Wu K, Chen L, Hou W, Feng Y, Zhu C. Analysis of heart injury laboratory parameters in 273 COVID-19 patients in one hospital in Wuhan, China. J Med Virol. 2020 Jul;92(7):819-823.

Kaur G, Sandeep F, Olayinka O, Gupta G. Morphologic Changes in Circulating Blood Cells of COVID-19 Patients. Cureus. 2021 Feb 18;13(2):e13416. doi: 10.7759/cureus.13416.

Driggin E. et al Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the Coronavirus Disease 2019 (COVID-19) Pandemic. J Am Coll Cardiol. 2020 Mar 19. Epublished

Al-Samkari, H. et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 136, 489–500 (2020).

Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46 (5): 846–848.

Kreutz R., Algharably E.A., Azizi M. et al. Hypertension, the renin–angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc. Res. 2020; 116 (10): 1688–1699.

Guan W.J., Liang W.H., Zhao Y. et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: A Na tion wide analysis. Eur. Respir. J. 2020; 55 (5): 2000547.

Onder G. et al Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020; 323 (18): 1775–1776.

Richardson S. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323 (20): 2052–2059.

Glybochko P. V. et al. [Clinical characteristics of 1007 intensive care unit patients with SARS-CoV-2 pneumonia]. Klinicheskaya farmakologiya i terapiya. 2020; 29 (2): 21–29.

Karnik SS, Unal H, Kemp JR et al. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67 (4): 754–819. doi: 10.1124/pr.114.010454;

Фисун А.Я., Лобзин Ю.В., Черкашин Д.В., Тыренко В.В., Ткаченко К.Н., Качнов В.А. и др.. Механизмы поражения сердечно-сосудистой системы при COVID-19. Вестник РАМН. 2021;76(3):287–297;

Shirazi S., Mami S., Mohtadi N., et al. Sudden cardiac death in COVID19 patients, a report of three cases. Future Cardiol. 2021;17:113–118.

Chapman AR, Bularga A, Mills NL. High-Sensitivity Cardiac Troponin Can Be an Ally in the Fight Against COVID-19.  Circulation. 2020;141(22):1733– 1735.

Bastard, P. et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID19 deaths. Sci. Immunol. 6, eabl4340 (2021);

Giustino G, Croft LB, Stefanini GG, Bragato R, Silbiger JJ, Vicenzi M, Danilov T, Kukar N, Shaban N, Kini A, et al.. Characterization of myocardial injury in patients with COVID-19.J Am Coll Cardiol. 2020; 76:2043–2055.

Ackermann M., Verleden S. E., Kuehnel M. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020

Becker R.C. COVID-19 update: Covid-19-associated coagulopathy. J ThrombThrombolys. 2020

Guo H, Sheng Y, Li W, et al. Coagulopathy as a Prodrome of Cytokine Storm in COVID-19-Infected Patients. Front Med (Lausanne) 2020;7;

Thachil J., Tang N., Gando S. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020; doi: 10.1111/jth.14810;

Inciardi RM, Lupi L, Zaccone G, Italia L., 1, Raffo M., 1, Tomasoni D. et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19).  JAMA Cardiol. 2020;5(7):819–824. DOI: 10.1001/jamacardio.2020.1096;

Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. Published online February 24, 2020. doi:10.1001/jama.2020.2648

Bonow RO, Fonarow GC, O’Gara PT, et al.. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol. 2020;5:751–75372;

Xiong T.Y., Redwood S., Prendergast B. et al. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur. Heart J. 2020; 41 (19): 1798–1800. DOI: 10.1093/ eurheartj/ehaa231.

Tavazzi G, Pellegrini C, Maurelli M, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020;22:911– 915;

Yang F, Shi S, Zhu J, et al. Analysis of 92 deceased patients with COVID-19. J Med Virol. 2020;92:2511–2515.

Hoffmann, M. et al. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine 65, 103255 (2021);

Arthur JM, Forrest JC, Boehme KW, Kennedy JL, Owens S, Herzog C, et al. (2021). Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS ONE 16(9): e0257016;

Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271;

Nicin L., Abplanalp W.T., Mellentin H. et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur. Heart J. 2020; 41 (19): 1804–1806.

Danser A.H.J., Epstein M., Batlle D. Renin–angiotensin system blockers and the COVID-19 pandemic: Аt present there is no evidence to abandon renin–angiotensin system blockers. Hypertension. 2020; 75 (6): 1382–1385.

Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int Immunopharmacol. 2021;101

Galvan-Roman, J. M. et al. IL-6 serum levels predict severity and response to tocilizumab in COVID-19: An observational study. J. Allergy Clin. Immunol. 147, 72–80 e78 (2021);

Lagunas-Rangel FA-O. Neutrophil-to-lymphocyte ratio and lymphocyteto-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. J Med Virol. 2020.

Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045 (2020);

Chen C., Zhou Y., Wang D.W. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020; 45 (3): 230–232.

Chandra, A., Chakraborty, U., Pal, J. & Karmakar, P. Silent hypoxia: a frequently overlooked clinical entity in patients with COVID-19. BMJ Case Rep. 13, e237207 (2020);

Klok FA et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb. Res. 191, 148–150 (2020).

Download (Русский)
  • Pushlish date: 4.08.2023
  • DOI:

  • Release: 3 ( 2023 ). Problems of biology and medicine
  • Section: Review of the literature


  • Копировать