ОКТ-АНГИОГРАФИЯ ПРИ ОЦЕНКЕ СОСУДИСТОГО РУСЛА СЕТЧАТКИ И ХОРИОИДЕИ


  • Жалалова Д.З., Махкамова Д.К., Норматова Н.М.
    Самаркандский государственный медицинский институт, Республика Узбекистан, г. Самарканд

Abstract

Оптическая когерентная томография (ОКТ)-это неинвазивный и высокоточный метод исследования, который позволяет получить тасвирины поперечного сечения тканей, изучаемых in Vivo, и измерить статическую плотность тканей в режиме онлайн. Окт, разработанная в оптической лаборатории Массачусетского технологического института в конце 80-х годов XX века, нашла свое применение во многих отраслях медицины-гастроэнтерологии, кардиологии, урологии, дерматологии, стоматологии. Однако этот метод получил наибольшее применение в диагностике глазных заболеваний.

Keywords

артериальная гипертензия, сетчатка, диагностика, лечение, профилактика.

Literature

1. Van Buskirk E.M. Glaucomatous optic neuropathy. J. Glaucoma. 1994; Suppl. 3: 2-4.

2. Van Buskirk E.M., Cioffi G.A. Glaucomatous optic neuropathy. Am. J. Ophthalmol. 1992;113(4):447-452

3. Burgoyne C.F., Downs J.C., Bellezza A.J., Suh J.K., Hart R.T. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 2005; 24(1): 39-73.

4. Caprioli J., Coleman A.L. Blood flow in glaucoma discussion. Blood pressure, perfusion pressure, and glaucoma. Am. J. Ophthalmol. 2010; 149(5): 704-12

5. Quigley H.A. Neuronal death in glaucoma. Prog. Retin. Eye Res. 1999; 18(1): 39-57. 6. Hayreh S.S. Ischemic optic neuropathies. Springer Publ. 2011.

7. Harris A., Ciulla T.A., Chung H.S., Martin B. Regulation of retinal and optic nerve blood flow. Arch Ophthalmol. 1998; 116(11): 1491-.5.

8. Hood D.C., Raza A.S., de Moraes C.G.V., et al. The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Trans. Vis. Sci. Tech. 2012; 1(1): 3

9. Lan Y.W., Wang I.J., Hsiao Y.C., Sun F.J., Hsieh J.W. Characteristics of disc hemorrhage in primary angle closure glaucoma. Ophthalmology. 2008; 115(8): 1328-33.

10. Park S.C., De Moraes C.G., Teng C.C., et al. Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology. 2011; 118(9): 1782-9.

11. Hood D.C., Fortune B., Arthur S.N., et al. Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography. J. Glaucoma. 2008; 17(7):519-28

 12. Xin D., Talamini C.L., Raza A.S., et al. Hypodense regions (“holes”) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects. Invest. Ophthalmol. Vis. Sci. 2011; 52(10): 7180-6.

13. Curcio C.A., Messinger J.D., Sloan K.R. Human choroidal layer thicknesses measured in macula-wide, high-resolution histologic sections. Invest. Ophthalmol. Vis. Sci. 2011; 52: 3943-54.

14. Leite M.T., Zangwill L.M., Weinreb R.N., et al. Effect of disease severity on the performance of Cirrus spectral-domain OCT for glaucoma diagnosis. Invest. Ophthalmol. Vis. Sci. 2010; 51(8): 4104-9.

15. Leung C.K., Chan W.M., Yung W.H., et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005; 112(3): 391-400.

16. Paunescu L.A., Schuman J.S., Price L.L., et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest. Ophthalmol. Vis. Sci. 2004; 45(6): 1716-24.

17. Scoles D., Gray D.C., Hunter J.J., et al. In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison. BMC Ophthalmol. 2009; 9:9.

18. Toussaint D., Kuwabara T., Cogan D.G. Retinal vascular patterns. II. Human retinal vessels studied in three dimensions. Arch. Ophthalmol. 1961; 65: 575-81.

19. Chan G., Balaratnasingam C., Xu J., et al. In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico- histological correlation. Microvasc. Res. 2015; 100: 32-39.

20. Yu P.K., Cringle S.J., Yu D.Y. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp. Eye. Res. 2014; 129: 83-92.

21. Tan P.E., Balaratnasingam C., Xu J., Mammo Z., et al. Quantitative comparison of retinal capillary images derived by speckle variance optical coherence tomography with histology. Invest. Ophthalmol. Vis. Sci. 2015; 56(6): 3989-96.

22. Mase T., Ishibazawa A., Nagaoka T., Yokota H., Yoshida A. Radial peripapillary capillary network visualized using wide-field montage optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 2016; 57(9): 504-10.

 23. Talusan E., Schwartz B. Specificity of fluorescein angiographic defects of the optic disc in glaucoma. Arch. Ophthalmol. 1977; 95(12): 2166-75.

24. Schwartz B., Rieser J.C., Fishbein S.L. Fluorescein angiographic defects of the optic disc in glaucoma. Arch. Ophthalmol. 1977; 95(11): 1961-74.

25. Piltz-Seymour J.R., Grunwald J.E., Hariprasad S.M., Dupont J. Optic nerve blood flow is diminished in eyes of primary open angle glaucoma suspects. Am. J. Ophthalmol. 2001; 132(1): 63-69.

26. Hamard P., Hamard H., Dufaux J., Quesnot S. Optic nerve head blood flow using a laser Doppler velocimeter and haemorheology in primary open-angle glaucoma and normal pressure glaucoma. Br. J. Ophthalmol. 1994; 78(6): 449-53.

27. Michelson G., Langhans M.J., Groh M.J. Perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open angle glaucoma. J. Glaucoma. 1996; 5(2): 91-8.

28. Yokoyama Y., Aizawa N., Chiba N., et al. Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk. Clin. Ophthalmol. 2011; 5: 1721-7.

29. Schuman J.S. Measuring blood flow: so, what? JAMA Ophthalmol. 2015; 133(9): 1052-105

 30. Yaoeda K., Shirakashi M., Funaki S., et al. Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry. Am J Ophthalmol 2000; 129(6): 734-9.

31. Blatter C., Grajciar B., Schmetterer L., Leitgeb R.A. Angle independent flow assessment with bidirectional Doppler optical coherence tomography. Opt. Lett. 2013; 38(21): 4433-6

 32. Formaz F., Riva C.E., Geiser M. Diffuse luminance flicker increases retina vessel diameter. Curr. Eye Res. 1997; 16(12): 1252-7.

33. Harris A., Ciulla T.A., Chung H.S., Martin B. Regulation of retinal and optic nerve blood flow. Arch. Ophthalmol. 1998;116(11):1491-5.

34. Dai C., Lui X., Zhang H.F., Puliafito C.A., Jiao S. Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2013; 54(13): 7998-8003

35. Garcia J., Garcia P.R. Retinal blood flow in the normal human eye using the Cannon laser blood flowmeter. Rosen. Ophthalmic. Res. 2002; 34(5): 295-9.

36. Spaide R.F., Klancnik J.M. Jr., Cooney M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015; 133(1): 45-50.

37. Курышева Н.И. Оптическая когерентная томография в диагностике глаукомы. Москва: Гринлайт, 2015. Kurysheva N.I. Optical coherence tomography in glaucoma diagnostics. Moscow: Greenlight Publ.; 2015. (In Russian).

38. Savastano M., Lumbroso B., Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015; 35(11): 2196-203.

39. Hogan M., Alvarado J., Weddell J.E. Histology of the human eye - an atlas and textbook. Philadelphia: WB Saunders; 1971.

40. Лумбросо Б., Хуанг Д., Чен Ч.Д. и др. ОКТ-ангиография. Клинический атлас. Пер. с англ. Москва: Издательство Панфилова; 2017: 38-40. Lumbroso B., Khuang D., Chen Ch. D., et al. OCT-angiography. Clinical atlas. Translation from English. Moscow: Panfilova Publ.; 2017: 38-40. (In Russian).

41. Duke-Elder S. The anatomy of visual system. London. 1961; 2: 372-6.

42. Provis J.M. Development of the primate retinal vasculature. Progress in Retinal and Eye Research. 2001; 20: 799-821.

43. Snodderly D. M., Weinhaus R. S., Choi J. C. Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J. Neurosci. 1992; 12: 1169-93.

44. Campbell J., Zhang M., Hwang T., et al. Detailed vascular anatomy of the human retina by projection- resolved optical coherence tomography angiography. Scientific Reports. 2017. 7: 42201.

45. Coscas G.J., Lupidi M., Coscas F., Cagini C., Souied E.H. Optical coherence tomography angiography versus traditional multi-modal imaging in assessing the activity of exudative age-related macular degeneration: a new diagnostic challenge. Retina. 2015;35(11):2219-28.

46. Bonnin S., Mané V., Couturier A., et al. New insight into the macular deep vascular plexus imaged by optical coherence tomography angiography. Retina 2015; 35(11): 2347-52.

47. Coscas F., Sellam A., Glacet- Bernard A., et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 2016; 57(9): 211-223.

48. Hayreh S.S. In vivo choroidal circulation and its watershed zones. Eye (Lond) 1990; 4(pt 2): 273-89.

49. Bird A.C., Weale R.A. On the retinal vasculature of the human fovea. Exp. Eye Res. 1974; 19: 409-17

50. Samara W.A., Say E.A., Khoo C.T., et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015; 35(11): 2188-95.

51. Shahlaee A., Pefkianaki M., Hsu J., Ho A.C. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am. J. Ophthalmol. 2016; 161(Jan.): 50-5. e1.

52. Kuehlewein L., Tepelus T.C., An L., et al. Noninvasive visualization and analysis of the human parafoveal capillary network using swept source OCT optical microangiography. Invest. Ophthalmol. Vis Sci. 2015; 56(6): 3984-8.

53. Pechauer A.D., Yali Jia, Liang Liu, et al. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest. Ophthalmol. Vis. Sci. 2015; 56(5): 3287-91.

54. Pechauer A.D., Tan O., Liu L., et al. Retinal blood flow response to hyperoxia measured with en face Doppler optical coherence tomography. Invest. Ophthalmol. Vis Sci. 2016; 57(9): 141-5

 

55. Xu Р., Deng G., Jiang C., Kong X., Yu J., Sun X. Microcirculatory responses to hyperoxia in macular and peripapillary regions. Invest. Ophthalmol. Vis. Sci. 2016.

Download (Русский)
  • Pushlish date: 21.01.2022
  • DOI:

  • Release: 6 ( 2021 ). Problems of biology and medicine
  • Section: Review of the literature


  • Копировать