СКРЫТОЕ ОСТРОЕ ПОВРЕЖДЕНИЕ ПОЧЕК ПРИ COVID-19


  • Амонов М.К.
    Бухарский государственный медицинский институт, Республика Узбекистан, г. Бухара

Abstract

Поражение почек является отличительной чертой тяжелого острого респираторного синдрома при COVID-19, приводящего к развитию острого повреждения почек (ОПП) и хронической болезни почек (ХБП) у пациентов с COVID-19. Однако выявление поражения почек у пациентов с COVID-19 может произойти только на поздней стадии на основании текущих клинических анализов крови и мочи. Некоторые исследования указывают на развитие субклинического синдрома острого повреждения почек (субОПП) при COVID-19. Этот синдром характеризуется значительным поражением интерстициальных канальцев без изменения предполагаемой скорости клубочковой фильтрации. Несмотря на сложность механизма (механизмов), лежащего в основе развития субОПП, предполагается изменение механизма белкового эндоцитоза в эпителиальных клетках проксимальных канальцев. В этой статье основное внимание уделяется данным, связанным с суб-ОПП и COVID-19

Keywords

COVID-19; болезнь почек; почечная реабсорбция белка; проксимальный каналец; мегалин; ренин-ангиотензиновая система.

Literature

1. Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154.

2. Berlin, D.A.; Gulick, R.M.; Martinez, F.J. Severe COVID-19. N. Engl. J. Med. 2020, 383, 2451–2460.

3. Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793.

4. Lopes-Pacheco, M.; Silva, P.L.; Cruz, F.F.; Battaglini, D.; Robba, C.; Pelosi, P.; Morales, M.M.; Caruso-Neves, C.; Rocco, P.R.M. Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Front. Physiol. 2021, 12, 593223.

5. Wu, T.; Zuo, Z.; Kang, S.; Jiang, L.; Luo, X.; Xia, Z.; Liu, J.; Xiao, X.; Ye, M.; Deng, M. Multi-organ Dysfunction in Patients with COVID-19: A Systematic Review and Meta-analysis. Aging Dis. 2020, 11, 874–894.

6. Tregoning, J.S.; Flight, K.E.; Higham, S.L.;Wang, Z.; Pierce, B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021, 21, 626–636.

7. Fabrizi, F.; Alfieri, C.M.; Cerutti, R.; Lunghi, G.; Messa, P. COVID-19 and Acute Kidney Injury: A Systematic Review and Meta-Analysis. Pathogens 2020, 9, 1052.

8. Nadim, M.K.; Forni, L.G.; Mehta, R.L.; Connor, M.J., Jr.; Liu, K.D.; Ostermann, M.; Rimmelé, T.; Zarbock, A.; Bell, S.; Bihorac, A.; et al. COVID-19-associated acute kidney injury: Consensus report of the 25th Acute Disease Quality Initiative (ADQI)Workgroup. Nat. Rev. Nephrol. 2020, 16, 747–764.

9. Legrand, M.; Bell, S.; Forni, L.; Joannidis, M.; Koyner, J.L.; Liu, K.; Cantaluppi, V. Pathophysiology of COVID-19-associated acute kidney injury. Nat. Rev. Nephrol. 2021, 17, 751–764.

10. Diao, B.; Wang, C.; Wang, R.; Feng, Z.; Zhang, J.; Yang, H.; Tan, Y.; Wang, H.; Wang, C.; Liu, L.; et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat. Commun. 2021, 12, 2506.

11. Silver, S.A.; Beaubien-Souligny, W.; Shah, P.S.; Harel, S.; Blum, D.; Kishibe, T.; Meraz-Munoz, A.; Wald, R.; Harel, Z. The Prevalence of Acute Kidney Injury in Patients HospitalizedWith COVID-19 Infection: A Systematic Review and Meta-analysis. Kidney Med. 2021, 3, 83–98.e1.

12. Nugent, J.; Aklilu, A.; Yamamoto, Y.; Simonov, M.; Li, F.; Biswas, A.; Ghazi, L.; Greenberg, H.; Mansour, G.; Moledina, G.; et al. Assessment of Acute Kidney Injury and Longitudinal Kidney Function After Hospital Discharge Among Patients With and without COVID-19. JAMA Netw. Open 2021, 4, e211095.

13. Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436.

14. Thakur, B.; Dubey, P.; Benitez, J.; Torres, J.P.; Reddy, S.; Shokar, N.; Aung, K.; Mukherjee, D.; Dwivedi, A.K. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19. Sci. Rep. 2021, 11, 8562.

15. Liu, Y.F.; Zhang, Z.; Pan, X.L.; Xing, G.L.; Zhang, Y.; Liu, Z.S.; Tu, S.H. The chronic kidney disease and acute kidney injury involvement in COVID-19 pandemic: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0244779.

16. Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184.

17. Haase, M.; Kellum, J.A.; Ronco, C. Subclinical AKI–an emerging syndrome with important consequences. Nat. Rev. Nephrol. 2012, 8, 735–739.

18. Vanmassenhove, J.; Van Biesen,W.; Vanholder, R.; Lameire, N. Subclinical AKI: Ready for primetime in clinical practice? J. Nephrol. 2019, 32, 9–16.

19. Zou, C.;Wang, C.; Lu, L. Advances in the study of subclinical AKI biomarkers. Front. Physiol. 2022, 13, 960059.

20. Fang, F.; Hu, X.; Dai, X.; Wang, S.; Bai, Z.; Chen, J.; Pan, J.; Li, X.; Wang, J.; Li, Y. Subclinical acute kidney injury is associated with adverse outcomes in critically ill neonates and children. Crit. Care 2018, 22, 256.

21. Yende, S.; Parikh, C.R. Long COVID and kidney disease. Nat. Rev. Nephrol. 2021, 17, 792–793.

22. Al-Aly, Z.; Xie, Y.; Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 2021, 594, 259–264.

23. Bowe, B.; Xie, Y.; Xu, E.; Al-Aly, Z. Kidney Outcomes in Long COVID. J. Am. Soc. Nephrol. 2021, 32, 2851–2862.

24. Divyaveer, S.; Jha, V. COVID-19 and care for patients with chronic kidney disease: Challenges and lessons. FASEB Bioadv. 2021, 3, 569–576.

25. Rizaev J. A., Rizaev E. A., Akhmadaliev N. N. Current View of the Problem: A New Approach to Covid-19 Treatment //Indian Journal of Forensic Medicine & Toxicology. – 2020. – Т. 14. – №. 4.

26. Rizaev J. A. et al. The need of patients with systemic vasculitis and coronavirus infection in the treatment of periodontal diseases //Applied Information Aspects of Medicine (Prikladnye informacionnye aspekty mediciny). – 2022. – Т. 25. – №. 4. – С. 40-45.

27. Rizaev J. A., Ahrorova M. S. COVID-19 views on immunological aspects of the oral mucosa //European research: innovation in science, education and technology. – 2022. – С. 111-113.

28. Rizaev J. A. et al. Physico-chemical parameters of mixed saliva and their correction in patients in the post-covid period //Cardiometry. – 2022. – №. 25. – С. 1168-1173.

29. Alimjanovich R. J. et al. Clinical and immunological aspects of the relationship of the oral cavity and covid-19 //Thematics Journal of Education. – 2022. – Т. 7. – №. 2.

30. Chen, Z.; Hu, J.; Liu, L.; Chen, R.; Wang, M.; Xiong, M.; Li, Z.Q.; Zhao, Y.; Li, H.; Guan, C.; et al. SARS-CoV-2 Causes Acute Kidney Injury by Directly Infecting Renal Tubules. Front. Cell Dev. Biol. 2021, 9, 664868.

31. Rahmani, W.; Chung, H.; Sinha, S.; Bui-Marinos, M.P.; Arora, R.; Jaffer, A.; Corcoran, J.A.; Biernaskie, J.; Chun, J. Attenuation of SARS-CoV-2 infection by losartan in human kidney organoids. iScience 2022, 25, 103818.

32. Wang, K.; Chen, W.; Zhang, Z.; Deng, Y.; Lian, J.Q.; Du, P.; Wei, D.; Zhang, Y.; Sun, X.X.; Gong, L.; et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 2020, 5, 283.

33. Kosugi, T.; Maeda, K.; Sato, W.; Maruyama, S.; Kadomatsu, K. CD147 (EMMPRIN/Basigin) in kidney diseases: From an inflammation and immune system viewpoint. Nephrol. Dial. Transplant. 2015, 30, 1097–1103.

34. Mori, Y.; Fink, C.; Ichimura, T.; Sako, K.; Mori, M.; Lee, N.N.; Aschauer, P.; Padmanabha Das, K.M.; Hong, S.; Song, M.; et al. KIM-1/TIM-1 is a Receptor for SARS-CoV-2 in Lung and Kidney. MedRxiv 2022.

35. Han, W.K.; Wagener, G.; Zhu, Y.; Wang, S.; Lee, H.T. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin. J. Am. Soc. Nephrol. 2009, 4, 873–882.

36. Han,W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002, 62, 237–244.

37. Caceres, P.S.; Savickas, G.; Murray, S.L.; Umanath, K.; Uduman, J.; Yee, J.; Liao, T.D.; Bolin, S.; Levin, A.M.; Khan, M.N.; et al. High SARS-CoV-2 Viral Load in Urine Sediment Correlates with Acute Kidney Injury and Poor COVID-19 Outcome. J. Am. Soc. Nephrol. 2021, 32, 2517–2528.

38. Tang, Y.; Liu, J.; Zhang, D.; Xu, Z.; Ji, J.;Wen, C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front. Immunol. 2020, 11, 1708.

39. Nechemia-Arbely, Y.; Barkan, D.; Pizov, G.; Shriki, A.; Rose-John, S.; Galun, E.; Axelrod, J.H. IL-6/IL-6R axis plays a critical role in acute kidney injury. J. Am. Soc. Nephrol. 2008, 19, 1106–1115.

40. Amonov, Muhammad Komil Ogli. "RISK FACTORS FOR SEVERE AND CRITICAL PATIENTS WITH COVID-19" Oriental renaissance: Innovative, educational, natural and social sciences, vol. 1, no. 10, 2021, pp. 1080-1084.

41. К , А. М. (2021). Острое Повреждение Почек При Коронавирусной Болезни (Обзорная Статья). Central Asian Journal of Medical and Natural Science, 378-382.

42. Amonov Muhammad Komil o'g'li // Orientation to Acute Kidney Injury in Covid-19 // Vol. 1 No. 5 (2021): JOURNAL OF ADVANCED RESEARCH AND STABILITY (JARS).

Download (Русский)
  • Pushlish date: 4.08.2023
  • DOI:

  • Release: 3 ( 2023 ). Problems of biology and medicine
  • Section: Review of the literature


  • Копировать