ДИАГНОСТИЧЕСКОЕ И ПРОГНОСТИЧЕСКОЕ ЗНАЧЕНИЕ БИОМАРКЕРОВ ПЕРИНАТАЛЬНОЙ ТРАВМЫ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ


  • Мамадалиев А.М., Алиев М.А., Мамадалиева С.А., Тилавкулов М.С.
    Самаркандский государственный медицинский университет, Республика Узбекистан, г. Самарканд

Аннотация

Несмотря на то, что в перинатальной медицине существует множество методов оценки состояния мозговой ткани новорожденных, выявление ранних признаков поражения головного мозга является одной из важнейших задач современной медицины. Определение степени поражения центральной нервной системы (ЦНС) позволяет оценить результаты различных методов лечения врожденной черепно-мозговой травмы, перинатальной асфиксии, гипоксически-ишемической энцефалопатии и внутрижелудочковых кровоизлияний, а также риск развития неврологического дефицита. В оценке осложнений гипоксиии и травмы ЦНС изучаются комплексные биомаркеры, в том числе нейропротеины, кальций-связывающий белок, вазоактивные вещества, маркеры оксидативного стресса, медиаторы воспаления. Известно, что при травмах головного мозга повышается концентрация ряда биомаркеров в различных биологических жидкостях, что коррелирует со степенью выраженности травмы независимо от времени рождения. Таким образом, в данной статье представлен анализ литературы, направленный на оценку значения биомаркеров в выявлении поражения головного мозга у детей.

Ключевые слова

нейрон-специфические белки, биомаркеры, перинатальная гипоксия, родовая краниоцеребральная травма.

Литература

1.  Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001; 107: 823–6.

2. Apple F.S., Jesse R.L., Newby L.K., et al. National Academy of Clinical Biochemistry; IFCC Committee for Standardization of Markers of Cardiac Damage. National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine Practice Guidelines: Analytical issues for biochemical markers of acute coronary syndromes. Circulation. 2007; 115: e352–5.

3. Atzori L., Antonucci R., Barberini L., et al. 1H NMR-based metabolomic analysis of urine from preterm and term neonates. Front Biosci (Elite Ed). 2011; 3: 1005–12.

4. Bainbridge S.A., Smith G.N. HO in pregnancy. Free Radic Biol Med. 2005; 38: 979–88.

5. Barber A., Robson S.C., Myatt L., et al. Heme oxygenase expression in human placenta and placental bed: reduced expression of placenta endothelial HO-2 in preeclampsia and fetal growth restriction. FASEB J. 2001; 15: 1158–68.

6. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116: 281–97.

7. Basile A.M., Fusi C., Conti A.A., et al. S-100 protein and neuron specific enolase as markers of subclinical cerebral damage after cardiac surgery: preliminary observation of a 6-month follow-up study. Eur Neurol. 2001; 45: 151–9.

8. Bellissima V., Visser G.H., Ververs T.F., et al. Antenatal maternal antidepressants drugs affect activin A concentrations in maternal blood, in amniotic fluid and in fetal cord blood. J Matern Fetal Neonatal Med. 2011; 24: 31–4.

9. Berezin V.A., Belik. Ya. V. Специфические белки нервной ткани /- Киев : Наукова думка, 1990. — С. 264.

10. Blennow M., Savman K., Ilves P., et al. Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr. 2001; 90: 1171–5.

11. Bracci R., Perrone S., Buonocore G. The timing of neonatal brain damage. Biol Neonate. 2006; 90: 145–55.

12. Celtik C., Acunas B., Oner E., et al. Neuron-specific enolase as a marker of the severity and outcome of hypoxic encephalopathy. Brain Dev. 2004; 26: 398–402.

13. Chekhonin V.P.,. Gurina O. I, Ryabukhin I. A. Иммуноферментный анализ нейронспецифической енолазы на основе моноклональных антител в оценке проницаемости гематоэнцефалического барьера при нервно-психических заболеваниях / [и др.] // Рос. психиатр. журн. — 2000. — № 4. — С. 15–19.

14. Cullen V.C., Fredenburg R.A., Evans C., et al. Development and advanced validation of an optimized method for the quantitation ofAb42 in human cerebrospinal fluid. AAPS J. 2012; 14: 510–8.

15. Denschlag D., Marculescu R., Unfried G., et al. The size of a microsatellite polymorphism of the haem oxygenase 1 gene is associated with idiopathic recurrent miscarriage. Mol Hum Reprod. 2004; 10: 211–4.

16. Dessi A., Atzori L., Noto A., et al. Metabolomics in newborns with intrauterine growth retardation (IUGR): urine reveals markers of metabolic syndrome. J Matern Fetal Neonatal Med. 2011; 24: 35–9.

17. Di Iorio R., Marinoni E., Lituania M., et al. Adrenomedullinin creases in term asphyxiated newborns developing intraventricular hemorrhage. Clin Biochem. 2004; 37: 1112–6.

18. Eide I.P., Isaksen C.V., Salvesen K.A., et al. Decidual expression and maternal serum levels of heme oxygenase 1 are increased in preeclampsia. Acta Obstet Gynecol Scand. 2008; 87: 272–9.

19. Ennen C.S., Huisman T.A., Savage W.J., et al. Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathytreated with whole-body cooling. Am J Obstet Gynecol. 2011; 205: 251–7.

20. Ferri G.L., Probert L., Cocchia D., et al. Evidence for the presence of S-100 protein in the glial component of the human enteric nervous system. Nature. 1986; 297: 409–10.

21. Florio P., Abella R., Marinoni E., et al. Biochemical markers of perinatal brain damage. Front Biosci (Schol Ed). 2010; 2: 47–72.

22. Florio P., Frigiola A., Battista R., et al. Activin A in asphyxiated full term newborns with hypoxic ischemic encephalopathy. Front Biosci (Elite Ed). 2010; 2: 36–42.

23. Florio P., Frigiola A., Battista R., et al. Activin A in asphyxiated full-term newborns with hypoxic ischemic encephalopathy. Front. Biosci. 2010; 2: 36–42.

24. Foerch C., Singer O.C., Neumann-Haefelin T., et al. Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch Neurol. 2005; 62: 1130–4.

25. Fogel W., Krieger D., Veith M., et al. Serum neuron-specific enolase as early predictor of outcome after cardiac arrest. Crit Care Med. 1997; 25: 1133–8.

26. Fujita T., Toda K., Karimova A., et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med. 2001; 7: 598–604.

27. Garcia-Alix A., Cabanas F., Pellicer A., et al. Neuron-specific enolase and myelin basic protein: relationship of cerebrospinal fluid concentrations to the neurologic condition of asphyxiated full-term infants. Pediatrics. 1994; 93: 234–40.

28. Gazzolo D., Abella R., Frigiola A., et al. Neuromarkers and unconventional biological fluids. J Matern Fetal Neonatal Med. 2010; 23: 66–9.

29. Gazzolo D., Frigiola A., Bashir M., et al. Diagnostic accuracy of S100B urinary testing at birth in full-term asphyxiated newborns to predict neonatal death. PLoS One. 2009; 4: e4298.

30. Gazzolo D., Michetti F. Perinatal S100B protein assessment inhuman unconventional biological fluids: a minireview and new perspectives. Cardiovasc Psychiatry Neurol. 2010; 2010: 703563.

31. Hayakata T., Shiozaki T., Tasaki O., et al. Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock. 2004; 22: 102–7.

32. Hellstrom-Westas L., Rosen I. Continuous brain-function monitoring: state of the art in clinical practice. Semin Fetal Neonatal Med. 2006; 11: 503–11.

33. Karyakina G. M., Nadezhdina M. V., Hinko M. A. Нейронспецифическая енолаза как индикатор поражения мозговой ткани при ишемических инсультов / // Неврол. вестн. — 2007. — Т. 39, № 1. — С. 41–44. 6

34. Kochanek P.M., Berger R.P., Bayir H., et al. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Curr Opin Crit Care. 2008; 14: 135–41.

35. Koo J., Byun Y. Current status of PET-imaging probes of beta-amyloid plaques. Arch Pharm Res 2013; 36 (10): 1178–84.

36. Kovesdi E., Luckl J., Bukovics P., et al. Up-date on protein biomarkersin traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochir (Wien). 2010; 152: 1–17.

37. Li Volti G., Galvano F., Frigiola A., et al. Potential immunoregulatory role of heme oxygenase-1 in human milk: a combined biochemical and molecular modeling approach. J Nutr Biochem. 2010; 21: 865–71.

38. Looney A.M., et al. Down-regulation of umbilical cord blood levels of miR-374a in neonatal hypoxic ischemic encephalopathy. J. Pediatr. 2015; 167: 269–73.

39. Low J.A., Lindsay B.G., Derrick E.J. Threshold of metabolic acidosis-associated with newborn complications. Am J Obstet Gynecol. 1997;

40. Michetti F., Corvino V., Geloso M.C., et al. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem. 2012; 120: 644–59.

41. Moritz S., Schmidt C., Bucher M., et al. Neuromonitoring in carotid surgery: are the results obtained in awake patients transferable to patients under sevoflurane/fentanyl anesthesia? J Neurosurg Anesthesiol. 2010; 22: 21–31.

42. Mulligan J.C., Painter M.J., O’Donoghue P.A., et al. Neonatal asphyxia II. Neonatal mortality and long-term sequelae. J Pediatr. 1980; 96: 903–7.

43. Nagdyman N., Komen W., Ko H., et al. Early biochemical indicators of hypoxic ischemic encephalopathy after birth asphyxia. Pediatr Res. 2001; 49: 502–6.

44. Pahlman S., Esscher T., Bergvall P., Odelstad L. Purification and characterization of human neuron-specific enolase: radioimmunoassay development. Tumour Biol. 1984; 5: 127–39.

45. Perrone S., Tataranno M.L., Stazzoni G., Buonocore G. Biomarkers of oxidative stress in fetal and neonatal diseases. J Matern Fetal Neonatal Med. 2012; 25: 2575–8.

46. Pham N., Fazio V., Cucullo L., et al. Extracranial sources of S100B do not affect serum levels. PLoS One. 2010; 5 (9). 47: 954–6.

47. Pleines U.E., Morganti-Kossmann M.C., Rancan M., et al. S-100 beta reflects the extent of injury and outcome, whereas neuronal specific enolase is a better indicator of neuroinflammation in patients with severe traumatic brain injury. J Neurotrauma. 2001; 18: 491–8.

48. Protein S100, neu-ron-specific enolase (NCE), myelin basic protein (MBP) and glial fibrialy acidic protein (GFAR) in cerebrospinal fluid (CSF) and blood of neurological paitiens / K. J. Lamers, P. Vos, M. M. Verbeek [et al.] // Brain Res. Bull. — 2003. — Vol. 15. — P. 261–264.

49. Risso F.M., Serpero L.D., Zimmermann L.J., et al. Urine S100 BB and A1B dimers are valuable predictors of adverse outcome in full-term asphyxiated infants. Acta Paediatr. 2013; 102 (10): e467.

50. Roka A., Kelen D., Halasz J., et al. Serum S100B and neuron-specific enolase levels in normothermic and hypothermic infants after perinatal asphyxia. Acta Paediatr. 2012; 101: 319–23

51. Sanchez-Pena P., Pereira A.R., Sourour N.A., et al. S100B as an additional prognostic marker in subarachnoid aneurysmal hemorrhage. Crit Care Med 2008; 36: 2267–73.

52. Sannia A., Risso F.M., Zimmermann L.J., et al. S100B urine concentrations in late preterm infants are gestational age and gender dependent. Clin Chim Acta. 2013; 417: 31–4.

53. Sannia A., Zimmermann L.J., Gavilanes A.W., et al. Elevated activin A urine levels are predictors of intraventricular hemorrhage in preterm newborns. Acta Paediatr. 2013; 102 (10). doi: 10.1111/apa.12332.

54. Serpero L.D., et al. J Matern Fetal Neonatal Med. 2013; 26 (S2): 44–9. Downloaded by [Federal State Institution] at 04:02 11 July 2016.

55. Shrestha Dangol D., Chen H.P. Role of hemeoxygenase-2 in pregnancy-induced hypertension. Int J Gynaecol Obstet. 2004; 85: 44–6.

56. Singh H.V., Pandey A., Shrivastava A.K., Raizada A., Singh S.K., Singh N. Prognostic value of neuron specific enolase and IL-10 in ischemic stroke and its correlation with degree of neurological deficit. Clin Chim Acta 2013; 419: 136–138.

57. Tanaka Y., Maher J.M., Chen C., Klaassen C.D. Hepatic ischemia reperfusion induces renal heme oxygenase-1 via NF-E2-relatedfactor 2 in rats and mice. Mol Pharmacol. 2007; 71: 817–25.

58. Tenhunen R., Marver H.S., Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA. 1968; 61: 748–55.

59. Woertgen C., Rothoerl R.D., Metz C., Brawanski A. Comparison of clinical, radiologic, and serum marker as prognostic factors after severe head injury. J Trauma. 1999; 47: 1126–30.

Скачать (Русский)
  • Дата публикации: 4.11.2022
  • DOI:

  • Выпуск: 4 ( 2022 ). Проблемы биологии и медицины
  • Раздел: Обзор литературы


  • Копировать